Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Emergent Mater ; 5(2): 249-260, 2022.
Article in English | MEDLINE | ID: covidwho-1827617

ABSTRACT

The deadly novel coronavirus SARS-CoV-2 is responsible for COVID-19, which was first recognized in Wuhan, China, in December 2019. Rapid identification at primary stage of the novel coronavirus, SARS-CoV-2, is important to restrict it and prevent the pandemic. Real-time RT-PCR assays are the best diagnostic tests presently available for SARS-CoV-2 detection, which are highly sensitive, even though expensive equipment and trained technicians are necessary. Furthermore, the method has moderately long time bound. This deadly viral infection can also be detected by applying various spectroscopic techniques as spectroscopy can provide fast, precise identification and monitoring, leading to the overall understanding of its mutation rates, which will further facilitate antiviral drug development as well as vaccine development. It is an innovative and non-invasive technique for combating the spread of novel coronavirus. This review article demonstrates the application of various spectroscopic techniques to detect COVID-19 rapidly. Different spectroscopy-based detection protocols and additional development of new, novel sensors and biosensors along with diagnostic kits had been described here stressing the status of sensitive diagnostic systems to handle with the COVID-19 outbreak. Graphical abstract: Spectroscopy: A versatile sensing tool for cost-effective and rapid detection of novel Coronavirus (COVID-19).

SELECTION OF CITATIONS
SEARCH DETAIL